Goal Analytics via Model Checking for Autonomous Systems

Jin Song Dong'2, Naipeng Dong', Zhé Héu?, Brendan Mahony?, Martin Oxenham?®
J.dong @ griffith.edu.au, dcsdn@nus.edu.sg, z.hou@griffith.edu.au,
{brendan.mahony, martin.oxenham} @dst.defence.gov.au
'National University of Singapore, ?Griffith University, >DST Australia

Abstract

Analogous to planning via model checking, we
propose to apply model checking on goal analyt-
ics of self-regulated agents in autonomous systems.
Our project involves investigating how to integrate
goal reasoning techniques into the Process Analy-
sis Toolkit (PAT) model checking framework and
evaluating which model checking algorithms are
efficient for complex and concurrent systems with
non-determinism. This paper presents the initial re-
search progress on a new Australian Defence Sci-
ence and Technology (DST) Group funded project
on goal analysis for autonomous systems.

1 Introduction

Many existing autonomous systems rely on controlled en-
vironments in order to function reliably. However, in typi-
cal everyday situations, such control cannot be guaranteed.
As such, to broaden the range of future applications for au-
tonomous systems, techniques need to be developed to en-
sure that the autonomous systems can be trusted to function
safely and effectively even in the face of unexpected situa-
tions which may arise. This will require the agents under-
pinning the autonomous systems to be able to reason about
their goals and to plan tasks to achieve those goals in an agile
manner.

We propose to apply model checking techniques to goal
reasoning and dynamic planning for autonomous agents. We
take planning via model checking as our foundation. That is,
given a goal, model checking assists with reasoning about all
possible action sequences that can lead to the goal. In addi-
tion, model checking can also calculate the cost and reward
of each action sequence, which assists decision making when
finding the optimal plan. Furthermore, we propose to extend
the planning procedure with goal reasoning via model check-
ing by generating and selecting goals and updating the task
hierarchy accordingly.

Motivation and Background. The behaviour of an intel-
ligent agent is often pre-defined in explicit detail in existing
autonomous systems. However, in the real-world, the agent
may have to operate in an uncertain environment which is dy-
namic and only partially observable. Therefore, pre-defined

behaviour or even online guided behaviour is not sufficient to
handle unanticipated situations in such environments. Exter-
nal events often require postponing or even abandoning the
current goal. This often occurs in Defence operations and ac-
tivities to provide humanitarian assistance and support disas-
ter relief. For instance, self-driving vehicles that survey nat-
ural disaster areas must be able to adjust their goals without
human interaction. In such settings, domain modelling is im-
practical because each disaster situation is distinct. The self-
driving vehicle must be able to adjust its goals when, e.g.,
a survivor is found. Despite that many self-driving vehicles
are being developed, tested and tentatively applied in many
countries, few are able to adjust their goals autonomously.

Most existing planning approaches rely on static goals.
That is, goals are specified at the beginning of the planning
process and they are not changed during the course of the
process. In contrast, enabling agents to respond to uncer-
tain and dynamic environments autonomously requires active
goal reasoning and planning. (Active) Goal reasoning of au-
tonomous agents has become a hot research topic recently. In
the literature, goal analytics and reasoning are used to recog-
nise when the world diverges from what is planned, to un-
derstand various hypotheses that interpret these changes of
circumstance, and to reason about what goals to pursue in re-
sponse to the changes. There have been formalisms which
define goals, tasks and the procedure of recognising and for-
mulating new goals [Alford er al., 2016]. However, most of
them are manual. Notable exceptions which designed algo-
rithms to generate new goals suffer from the scalability prob-
lem.

Model checking is a technology to automatically verify
whether certain properties are satisfied by a model using ex-
haustive search. Model checking is especially strong in ad-
dressing uncertain and concurrent behaviours. This technol-
ogy has been successfully applied to modelling and verify-
ing uncertain environments, such as a network attacker which
may perform arbitrary behaviour in communication proto-
cols. More importantly, model checking has been success-
fully applied to automatic planning in complex systems in
various domains [Li et al., 2014].

As a concrete application, we plan to deploy the model
checking based planning and goal reasoning framework on
Autonomous Underwater Vehicles (AUVs). Our approach
will provide a higher level of automation for the AUV sys-

tem so that the vehicle can smartly select its goals and plan
tasks automatically, and run with minimal human interaction.

Our approach. One approach to address the goal reason-
ing aspects of goal-driven autonomy that has emerged in the
last few years is based on goal hierarchies in which goals are
specified in terms of sub-goals and parent-goals in a hierar-
chical fashion. In the planning community, planners based on
so-called Hierarchical Task Networks (HTNs) have enjoyed
their fair share of success [Alford et al., 2016]. In HTNS,
a complete specification of tasks is usually required before-
hand. Recently, an alternative concept in the form of Hier-
archical Goal Networks (HGNs) has been proposed which
replaces tasks with goals in the planning hierarchy. Our ap-
proach will be based on a new framework which is a combina-
tion of HTN and HGN: Goal Task Networks (GTNs) [Alford
et al., 2016]. In GTNs, hierarchies specify the goals (resp.
tasks) and sub-goals (resp. sub-tasks) that need to be per-
formed, high-level goals (resp. tasks) are reified in terms of
sub-goals (resp. sub-tasks) in a goal/task tree. This offers
three advantages: multiple methods for achieving a goal can
be applied, planning with incomplete models is supported,
and the representation of goals in the goal network is easier to
reason about. These properties make GTNs a useful method
for supporting goal-driven autonomy.

The goal reasoning literature focuses on the procedure or
architecture of goal reasoning rather than on how to reason
about the goals in an automatic manner. Since model check-
ing has proven useful in solving planning problems [Sun et
al., 2013; Li et al., 2014], and goal reasoning is closely re-
lated to planning [Cox et al., 2016; Alford er al., 2016], it
is natural to adapt the techniques in the previous work and
use model checking to solve goal reasoning problems. In this
approach, the translation from Planning Domain Definition
Language (PDDL) to Communicating Sequential Process #
(CSP#) is important, because the former language can be used
to express goal reasoning problems [Wilson ez al., 2016], and
the latter language is recognised by existing model check-
ers [Sun et al., 2009].

We propose to extend CSP# [Li er al., 2012] with new fea-
tures a la [Sun et al., 2013] for goal reasoning. We trans-
late GTNs to the extended CSP# language, and use model
checking to obtain plans and goals in this framework. This
framework allows a much richer GTN environment in which
tasks and goals can be combined using the full power of the
extended CSP# process algebra. We then model the goal hier-
archy using logical relations between sub-goals in the model
checking framework, which is used to perform goal reason-
ing. Finally, we demonstrate how temporal properties such as
the duration of actions can be added in the CSP# language,
this results in a more expressive framework which is useful in
modelling the actions of unmanned vehicles.

2 Related Work

Effective decision-making is key to agents that can intelli-
gently react to unforeseen situations. A fundamental tech-
nique is planning — building a plan for achieving a given goal
on a given dynamic domain. Different approaches exist ac-

cording to the assumptions about the domain, the goals, the
plans and the planning algorithm. Conceptually, the domain
evolves according to the performed actions, a controller pro-
vides the actions according to the observations on the domain
and a plan [Ghallab er al., 2016]. An example of applying
automated reasoning techniques on planning is Kress-Gazit
et al.’s framework which automatically translates high-level
tasks defined in linear temporal logic formulae to hybrid con-
trollers [Kress-Gazit et al., 2009]. This framework allows for
reactive tasks, which may change depending on the informa-
tion the robot gathers at runtime. This is similar to the goal
reasoning literature where goals may change depending on
the environment at runtime.

As stated in the introduction, when unexpected events hap-
pen in the domain, the agent’s goal may be affected and thus
selecting a new goal and re-planning are necessary. This gen-
erally follows a note-assess-guide procedure, where note is
detecting discrepancies (e.g., [Paisner erf al., 2013]), assess is
hypothesizing causes for discrepancies, and guide performs
a suitable response [Anderson et al., 2006]. Differing from
classical planning where the goal is fixed, when a discrep-
ancy is detected, it is often necessary to change the current
goal. Goal reasoning is about scheduling a suitable goal for
the planning process.

Goal reasoning has been used in a number of projects about
controlling autonomous machines in a dynamic environment.
[Cox et al., 2016] propose to use classical planning to for-
malise goal reasoning. They present an architecture with a
cognitive layer and a metacognitive layer to model problem-
solving and dynamic event management in self-regulated au-
tonomy. The architecture is realised in the Metacognitive In-
tegrated Dual-Cycle Architecture 1.3, which is shown use-
ful in experiment. Consider a classical planning problem
P = (%, s0,9), where X is a state transition system, sg is the
initial state, and g is a set of conditions that the plan has to
satisfy. A plan 7 is a sequence of actions (o, - - - , o,) where
each action «; effects a transition from the current state to the
next state. A successful plan is thus one that goes from s and
eventually transitions to a final state s, F g that satisfies all
the conditions in g. To model the dynamic change in goals,
they use a function 3(s,g) — ¢’ to obtain a new goal from
the current state and goal. Therefore, in addition to planning,
a goal reasoning system formulates new goals at runtime and
creates new plans to achieve these goals.

[Roberts et al., 2015] give more detailed definitions of goal
reasoning in their framework. They divide the states and
goals into two parts: the external part is a modified or incom-
plete version of the transition system, and the internal part
represents the predicates and state required for the refinement
strategies. The authors use a data structure called goal mem-
ory to represent the relationship between goals, subgoals, par-
ent goals etc., and propose to solve the goal reasoning prob-
lem using refinement. They use a goal lifecycle model to cap-
ture the evolution of goals and the decision points involved
in the process. The goal lifecycle includes the formulation,
selection, expansion, execution, dispatch, evaluation, termi-
nation, and discard of goals. This model is adapted by [John-
son et al., 2016], who give a system called Goal Reasoning
with Information Measures. In the scenario of controlling

Unmanned Air Vehicles to survey certain areas, the goals are
formulated with parameters such as maximum uncertainty in
the search area, acceptable uncertainty under which the goal
is considered complete, and deadline by which the search
must complete. The goal reasoning method is shown useful
for unmanned aerial vehicles operating in dynamic environ-
ments.

A more theoretical foundation about planning and goal rea-
soning is surveyed by [Alford et al., 2016]. The authors unify
HGN planning and HTN planning into GTN planning. They
also provide plan-preserving translations from GTN prob-
lems to HTN semantics. Several computability and tractabil-
ity results are given. For example, GTN, HTN, and HGN are
semi-decidable, and a restricted form called GTN; is NEXP-
TIME.

An important application of our project is applying the
planning and goal reasoning framework to AUVs. A relevant
work in this aspect is goal reasoning for AUVs [Wilson e al.,
2016]. The authors use a goal-driven autonomy conceptual
model which has three parts: the planner, the goal controller,
and the state transition system. The goal reasoning problem is
formalised in PDDL, which is the standard language for rep-
resenting classical planning problems and is widely used by
many planners. The authors test their approach in simulations
where the AUV surveys a defined area and it has to respond
(change the goal) to the actions from a nearby unmanned sur-
face vehicle dynamically.

3 Challenges and Proposed Solutions

There are three main challenges in utilizing model checking
to perform goal reasoning.

First, how to specify tasks, goals and their relations? As
mentioned earlier, a given problem can be specified as goal-
s/tasks and sub-goals/sub-tasks in GTNs. However, in GTNs,
the goal may be changed as a consequence of environmental
events, and it cannot be a fixed specification any more. In
addition, there may be multiple sequences of actions that can
achieve the same goal. This further introduces complexity of
the tasks and goal specifications. Moreover, a high-level goal
may contain several sub-goals that may need to be achieved
in (partial) order or with constraints.

Second, how to model the evolution of plans and goals?
As consequences of the dynamic environment and non-
determinism, there may be multiple task plans to achieve one
goal, and there may be multiple goals to replace an old goal
when exogenous events break the current plan. How to fig-
ure out the optimal plan and goal is not yet well-studied in the
literature, especially when the evaluation may require reason-
ing about unexpected events and future events (i.e., temporal
evaluation) for planning and goal selection.

Third, how to make the goal reasoning system scale? In
the literature, the work on goal driven autonomy is mostly
theoretical, and the algorithms suffer from scalability prob-
lems. This prevents goal driven autonomy from being widely
applied in the real-world.

To address the challenges, analogous to classical planning
via model checking, we propose to use model checking, in
particular, the model checker PAT [Sun et al., 2009] to per-

form goal reasoning. PAT is a self-contained framework that
supports composing, simulating and reasoning about concur-
rent, probabilistic and timed systems with non-deterministic
behaviours. It comes with user friendly interfaces, a featured
model editor and an animated simulator. PAT implements
various model checking techniques which cater for different
properties (reachability, linear temporal logic and fairness)
and facilitate new language and algorithm design and imple-
mentation.

The first challenge is going to be addressed by propos-
ing a specification framework for GTN based on PAT. The
basic idea is to model the environment as a set of vari-
ables and events (CSP# supports complex data structures)
and model actions as symbolic events in CSP# (input lan-
guage for PAT), and formalising the goals as assertions/prop-
erties. In this way, given an initial environment (a state in
the model), model checking automatically finds all possible
plans to achieve the goal (the traces satisfying the assertions).
That is, we relate the enabled plans to their corresponding
goals. The relations between goals are captured by the log-
ical relations between assertions. Similarly, we can apply
model checking to identify the environment (the states in the
model) of the agent when an unanticipated event happens, by
searching the transitions labelled by the unanticipated event.
With the possible new environments, model checking then
can figure out the possible new goals and the task sequences
to achieve each new goal.

For the second challenge, the evaluation of plans and goals
can be addressed by extending the specification of tasks and
goals with costs and rewards, similar to the extension with
probability and time in PAT. Therefore, finding the optimal
plan or goal can be termed as the verification of plans with the
least (resp. best) costs (resp. rewards) with temporal proper-
ties in PAT. In particular, we formulate a goal with additional
information such as whether the goal must be satisfied (anal-
ogy to laws in society) or is preferably satisfied with a quan-
tifiable preference weight (analogous to personal habits). For
temporal reasoning, the PAT framework supports temporal el-
ements such as wait, execute with time-out and interrupt, start
execution within a time, and finish before a deadline.

For the third challenge, with the support of efficient model
checking algorithms implemented in PAT, goal reasoning is
achievable in an automatic manner. Especially, PAT has been
successfully applied in verifying large real-world systems.'

4 Planning and Goal Reasoning with PAT

GTN Planning. Automatic model checking has been suc-
cessfully applied to planning. Intuitively, a classical planning
problem can be converted as model checking of the truth of
a formula. Given a planning problem containing an initial
state, a goal and a set of actions, one can construct a system
model by translating every action into a corresponding state
transition in model checking. The initial state of the plan-
ning problem is also the initial state of the model by assign-
ing value to each variable accordingly. The goal is expressed
using a propositional formula. Then we use model check-
ing to verify the negation of the formula, so that the model

'PAT Model Checker. http://pat.comp.nus.edu.sg

checker provides a counterexample path consisting of actions
that lead to a state where the formula is satisfied.

In our previous work [Li er al., 2014], we have formally
established a relation between the classical planning domain
and the model checking domain, which helps to reduce er-
rors (e.g., lack of type information) in manual specification
or translation. We provide formal semantics for translating
PDDL to CSP# and have implemented the translation in PAT.
This implementation has been validated with several case
studies, which show that using the existing model checker
PAT to solve classical planning problems is both feasible and
efficient. Thus, we can directly use our previous work [Li et
al., 2014] to perform classical planning. For instance, in the
sliding game/eight-tiles game, given an initial configuration
of the eight tiles, as illustrated in Figure 1a, the objective is
to find a path or the shortest plan to reach the goal, as on the
right-hand side (Figure 1b). The only actions allowed in this
game are to slide the tiles with numbers. By specifying this
game as a model checking problem as in Figure 2, we are able
to use PAT to find the shortest plan immediately.

8|76 11213
41 41516
2153 7|8

(a) Initial Configuration (b) Goal

Figure 1: Sliding Game

var board = [8,7,6,0,4,1,2,5,3];

var emptypos = 3;
Game() = Left() [] Right() [] Up() [l Down();
Left ()=[emptypos!=2&&emptypos!=5&&emptypos !=8]

goleft{board[emptypos]=board[emptypos+1];

board[emptypos+1]=0;emptypos=emptypos+1;} —> Game();

Right ()=[emptypos!=0&&emptypos!=3&&emptypos=6]
goright{board[emptypos]=board[emptypos —1];

board [emptypos —1]=0;emptypos=emptypos —1;}—> Game();

Up()=[emptypos!=6&&emptypos!=7&&emptypos !=8]
goup{board [emptypos]=board [emptypos+3];
board [emptypos+3]=0;emptypos=emptypos+3;} —> Game();
Down()=[emptypos!=0&&emptypos!=1&&emptypos !=2]
godown{board[emptypos]=board[emptypos —3];

board [emptypos —3]=0;emptypos=emptypos —3;} —> Game () ;

#assert Game() reaches goal;

#define goal

board[0] == 1 && board[1] == 2 && board[2] == 3 &&
board[3] == 4 && board[4] == 5 && board[5] == 6 &&
board[6] == 7 && board[7] == 8 && board[8] ==

Figure 2: Sliding Game Specification

In our proposed approach we translate GTNs into CSP# in
order to treat goal reasoning within the planning algorithm.
The outline of this translation is as follows:

e Build an explicit CSP# model £ of the environment,
which gives dynamic environment events during execu-
tion, in the planning problem.

e Use model checking methods to reason about goals
against the composition of the system S together with
the environment £. This allows the treatment of “un-
specified” events in a rudimentary way.

e Translate the GTN into CSP# so as to use the task/goal
hierarchy to constrain the search space and thus allow
significantly larger problems to be solved. This transla-
tion is detailed below:

— tasks are sequences of events in CSP#;
— goals are guards in CSP#;
— action methods are primitive state update events;

— task methods are processes that call sub-task meth-
ods according to the task hierarchys;

— goal methods are processes that call lower level
goal methods according to the goal hierarchy; and

— goal realisation methods are processes that find
plans for achieving the goal from the current state.

In addition, we propose to extend the planning framework
with the following aspects:

e Introduce timing and general reward/cost functions to
the GTN planning formalism with translation into GTN.

o Introduce a full external goal reasoning environment that
makes use to the PAT model checker to determine and
evaluate suitable goal update responses to dynamic en-
vironmental conditions.

Goal Reasoning. Itis not expected that the translation from
GTN will produce a tractable solution to every goal reason-
ing problem, thus we need techniques specific to the goal
reasoning domain. Based on our previous work on classi-
cal planning, we propose to solve goal reasoning as follows.
First, we design a formal language (syntax) which is expres-
sive enough to capture the exogenous goal which may contain
dynamics or ambiguity. Intuitively, the dynamics and ambi-
guity are captured by the introduction of non-determinism in
goal specification. Thus instead of having a fixed goal, our
approach permits non-deterministic goals: multiple goals are
allowed in the specification, and the choice of the goal is not
determined beforehand. The hierarchy in goal networks is
captured by the logical relations between assertions. For in-
stance, the goal of the sliding game can be “a visually sorted
order of the tiles where the empty tile can either be the first
or the last tile” instead of a deterministic goal. The dynamic
goal may contain several deterministic goals (sub-goals) as
in Figure 3, depending on the position of the empty tile and
whether the order is increasing or decreasing. Each sub-goal
is captured in Figure 4, and the sub-goals are connected by
the OR (||) relation.

11213 8|17 |6 1|2 8|7

41516 51413 31415 6|54

718 211 6|78 3121
(a) (b) () (d)
goal_sub3 goal_sub4 goal_sub5 goal_subb

Figure 3: Flexible Goals

The PAT model checker can provide new plans when the
goal is changed. Consider the following situation: initially

define goall

board [0] == 1 && board [1] == 2 && board [2] == 3 &&
board [3] == 4 &% board [4] == 5 && board [5] == 6 &&
board [6] == && board [7] == 8 && board [8] == O0;

define goal2

board [0] == 8 && board [1] == 7 && board [2] == 6 &&
board [3] == 5 && board [4] == 4 && board [5] == 3 &&
board [6] == 2 && board [7] == 1 && board [8] == 0;

define goal3

board [0] == && board [1] == 1 && board [2] == 2 &&
board [3] == 3 && board [4] == 4 && board [5] == 5 &&
board [6] == 6 &% board [7] == 7 && board [8] == 8§;

define goal4

board [0] == 0 &% board [1] == 8 && board [2] == 7 &&
board [3] == 6 &% board [4] == 5 && board [5] == 4 &&
board [6] == 3 && board [7] == 2 && board [8] == 1;

define goal_root goall || goal2 || goal3 || goal4;
assert Game() reaches goal_root;

#define goal_subl goal_root && board[8] == 0;

#assert Game() reaches goal_subl;

#define goal_sub2 goal_root && board[0] == 0;

#assert Game() reaches goal_sub2;

#define goal_sub3 goal_subl && board[0] == 1;
#assert Game() reaches goal_sub3;

#define goal_sub4 goal_subl && board[0] == §;
#assert Game() reaches goal_sub4;

#define goal_sub5 goal_sub2 && board[l] == 1;
#assert Game() reaches goal_subS5;

#define goal_sub6 goal_sub2 && board[l] == §;
#assert Game() reaches goal_sub6;

Figure 4: Flexible Goals Specification

the dynamic goal is goal_root in Figure 4. As the au-
tonomous system executes, it may receive input from the
outside environment and react. For example, if the out-
side environment now requires that board[0] == 0, that
is, the empty tile must be the first one, then we can use
PAT to re-plan towards goal_sub2, which is a sub-goal of
goal_root. Later in execution, we may receive further in-
put from the environment that board[1] == 8, then we
use PAT to re-plan towards goal_sub#6, which is a sub-goal
of goal_sub2. The hierarchical relation between goals is
visualised in Figure 5. The goals goal_sub3, goal_sub4,
goal_subb, goal_subéb are respectively the goals in Fig-
ure 3.

goal_root

/\

goal_subl goal_sub2

A/\/\

goal_sub3 goal_sub4 goal_sub5 goal_subb
Figure 5: Hierarchy of goals in Figure 4.

Once an exogenous goal is specified, we use model check-
ing to find out all sub-goals and check the reachability of each
goal or find the shortest path to a goal, given the current state.
Second, we make use of our GTN to CSP# translation so that
we can verify a model in PDDL with hierarchical and non-

deterministic goals. In addition, we specify extra quantifica-
tion variables to figure out the optimised plan or goal in dy-
namic environments. Third, the above-mentioned extension
of semantics will then be incorporated in an algorithm for
goal reasoning and planning. This algorithm will be based on
the existing planning and model checking algorithms.

Temporal Planning and Reasoning. Timed events are an
important aspect when modelling the behaviour of agents
such as AUV, so supporting them is essential in our work.
Since PAT supports timed systems [Sun er al., 2013], we
can extend PDDL with durative actions/goals and action/goal
preferences. To capture that the actions/goals have durations,
we can assign an amount of time units to each action/goal,
and enhance the semantics of CSP# so that we allow timed
actions. Similar to the semantic rules in timed CSP#, suppose
the duration of the action a is a.time, then the semantics of
executing the action a in the process P deadline[d] (cf. [Sun
et al., 2013]) can be modified to the following rule:

(V.P) = (V. P")
(V, P deadline[d]) % (V', P deadline[d — a.time])

Other rules for timed processes (timeout, interrupt, and
within) can be changed in the same way. We further extend
the syntax of CSP# with new constructs for timed executions.
For instance, on top of the syntax of timed CSP#, we can
add P repeat|d], which means that the process P is repeat-
edly executed for d time units. This is useful when modelling
situations where the agent is required to keep surveying an
area for a period of time. Model checking of the temporal
reasoning with duration and deadline will be supported by
the sophisticated model checking algorithms on timed sys-
tems, which involve time duration and deadlines [Mahony
and Dong, 2000; Sun et al., 2013].

[d11]

5 Conclusion and Future Work

We proposed to extend CSP# syntax and semantics, as well as
the translation from PDDL to CSP#, to capture goal reasoning
and use model checking algorithms implemented in PAT for
automatic goal analytics. Currently, we have established the
foundation for solving planning problems using PAT. We have
developed formal semantics for translating PDDL to CSP#
and have implemented the translation in PAT. We also have
done preliminary work on extending the CSP# language to
solving temporal planning and goal reasoning. Implement-
ing this new language and model checking algorithms for it
in PAT is our immediate future task. Another direction of fu-
ture work is building a larger scale goal reasoning language in
which the model checking and planning algorithms are com-
ponents in this framework.

In addition to realising our idea, we plan to perform goal
analytics on AUV systems. There is an increasing interest
in the development of AUVs which are capable of being de-
ployed for extended periods (months and longer) with limited
communications. Such AUVs need to be capable of auto-
matically modifying their tasks and goals to respond to unex-
pected situations that arise during the deployment. Thus, the
AUV is a perfect case study to validate our proposal.

References

[Alford et al., 2016] Ron Alford, Vikas Shivashankar, Mark
Roberts, Jeremy Frank, and David W. Aha. Hierarchi-
cal planning: Relating task and goal decomposition with
task sharing. In Proc. 25th International Joint Confer-
ence on Artificial Intelligence 1JCAI, pages 3022-3029.
IJCAI/AAAI Press, 2016.

[Anderson et al., 2006] Michael L. Anderson, Tim Oates,
Waiyian Chong, and Donald Perlis. The metacognitive
loop I: enhancing reinforcement learning with metacogni-
tive monitoring and control for improved perturbation tol-
erance. J. Exp. Theor. Artif. Intell., 18(3):387-411, 2006.

[Cox et al., 2016] Michael T. Cox, Zohreh Alavi, Dustin
Dannenhauer, Vahid Eyorokon, Hector Munoz-Avila, and
Don Perlis. MIDCA: A metacognitive, integrated dual-
cycle architecture for self-regulated autonomy. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAT’16, pages 3712-3718. AAAI Press,
2016.

[Ghallab et al., 2016] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning and Acting. Cambridge
University Press, New York, NY, USA, 1st edition, 2016.

[Johnson et al., 2016] Benjamin Johnson, Mark Roberts,
Thomas Apker, and David W. Aha. Goal reasoning with
informative expectations. In ICAPS Workshop, London,
UK, 2016.

[Kress-Gazit et al., 2009] H. Kress-Gazit, G. E. Fainekos,
and G. J. Pappas. Temporal-logic-based reactive mission
and motion planning. [EEE Transactions on Robotics,
25(6):1370-1381, 2009.

[Li ef al.,2012] Yi Li, Jing Sun, Jin Song Dong, Yang Liu,
and Jun Sun. Translating PDDL into CSP# - the PAT ap-
proach. In 2012 IEEE 17th International Conference on
Engineering of Complex Computer Systems, pages 240-
249, July 2012.

[Li et al., 2014] Yi Li, Jin Song Dong, Jing Sun, Yang Liu,
and Jun Sun. Model checking approach to automated plan-
ning. Formal Methods in System Design, 44(2):176-202,
2014.

[Mahony and Dong, 2000] Brendan P. Mahony and Jin Song
Dong. Timed communicating object Z. IEEE Trans. Soft-
ware Eng., 26(2):150-177, 2000.

[Paisner et al., 2013] Matthew Paisner, Michael T. Cox, and
Don Perlis. Symbolic anomaly detection and assessment
using growing neural gas. In Proc. 25th IEEE Inter-
national Conference on Tools with Artificial Intelligence,
pages 175-181. IEEE Computer Society, 2013.

[Roberts et al., 2015] Mark Roberts, Thomas Apker, Ben-
jamin Johnston, Bryan Auslander, Briana Wellman, and
David W. Aha. Coordinating robot teams for disaster re-
lief. In Proceedings of the Twenty-Eighth International
Florida Artificial Intelligence Research Society Confer-
ence, FLAIRS 2015, Hollywood, Florida. May 18-20,
2015., pages 366-371, 2015.

[Sun er al., 2009] Jun Sun, Yang Liu, Jin Song Dong, and
Jun Pang. Pat: Towards flexible verification under fairness.

volume 5643 of Lecture Notes in Computer Science, pages
709-714. Springer, 2009.

[Sun er al., 2013] Jun Sun, Yang Liu, Jin Song Dong, Yan
Liu, Ling Shi, and Etienne André. Modeling and verifying
hierarchical real-time systems using stateful timed CSP.
ACM Trans. Softw. Eng. Methodol., 22(1):3:1-3:29, March
2013.

[Wilson et al., 2016] Mark A. Wilson, James McMahon,
A. Wolek, David W. Aha, and B.H. Houston. Toward
goal reasoning for autonomous underwater vehicles: Re-
sponding to unexpected agents. In 25th International Joint
Conference on Artificial Intelligence (IJCAI) Workshop on
Goal Reasoning, New York, NY, 2016.

